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Introduction

Fairness Metrics

Machine learning and Al systems are increasingly embedded in real-world decision-
making processes that impact consumers. This brings forth a critical concern: algo-
rithmic fairness. The challenge here is ensuring that predictions are not dispropor-
fionately influenced by sensitive attributes such as race, gender, or age with the
ogoal of promoting equitable outcomes.

Examples of Fairness: Hiring decision, Healthcare, Credit Lending, Risk Assess-
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't Is necessary to develop mathematical approaches to quantify biases and imple-
menting strategies to mitigate potential unfairness.
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Motivating Example: COMPAS

The COMPAS (Correctional Offender Management Profiling for Alternative
Sanctions) algorithm was a commercial machine learning system designed to
assess a criminal’s risk of recidivism and assist judges in sentencing decisions
within the U.S. legal system.

An independent analysis by ProPublica alleged significant disparities: Black de-
fendants were disproportionately misclassified as high-risk, while white defen-
dants were more frequently misidentified as low-risk.

A Look into Algorithmic Fairness: Metrics and
Implementation

Individual Fairness ensures similar individuals should receive similar predictions. If
two individuals are close in terms of relevant features, their outcomes should also
be close:

d(f(xi), flx)) < d(zi, 7;)

Group fairness ensures that predictive decisions do not disproportionately favor
or disadvantage certain demographic groups. Several group fairness metrics have
been proposed:

1. Demographic Parity requires the decision outcome to be independent of the

protected attribute (e.g., race, gender):

PY=1|S=a)=PY =1|S=0b), VabeS

2. Equal Opportunity ensures that the True Positive Rate (TPR) is equal across

different demographic groups for individuals who should receive a positive
outcome.

PY=1|Y=1,8=a)=P(Y=1|Y=1,5=0b), Va,beS

3. Equalized Odds requires that both the True Positive Rate (TPR) and the False

Positive Rate (FPR) are the same across demographic groups.

PY=1|Y=yS=a)=PY =1|Y=y,5=0b), Yye{0,1}, VYa,beS

4. Correlation Based Metrics: requires that correlation between Y and S is

minimized across all demographic groups.

min |cor(Y", S)]
Y

Implementing Fairness via Ridge Penaltyon S

Formulating the Mathematical Problem

The scope of Algorithmic Fairness includes establishing benchmarks to measure
fairness and developing methods in compliance with these metrics.

= Fairness Metrics: Fairness criteria can be categorized into two measures:
individual fairness and group fairness.

= |ndividual fairness is that similar individuals should be treated similarly.

» Group fairness requires that predictions remain consistent across different groups as defined
by some sensitive attribute(s).

* Implementing Fairness: Fairness constraints can be integrated across various
stages of the machine learning pipeline.

= Pre-processing involves removing bias from the original dataset before training the model

= |n-processing refers to incorporating fairness constraints during model training to reduce the
predictive power of sensitive variables. A considerable amount of research in this area
involves achieving fairness through ridge penalties in linear models

= Post-processing involves modifying model predictions after training.

Mentor: Jonathan Forstater

The setting: Let X and S denote matrices of predictors and sensitive features. Our
ooal is to predicting Y while minimize the predictive power of S in our regression
model.

First, we can write:

X=B'S+U

where B is the solution to the least squares problem: Bgis = (S15)71STX. We
can define the residuals:

(7 — X — BgLSS

By properties of OLS, reSAiduals and regressors are uncorrelated. Thus, S and U are
orthogonal; i.e. COV(S, U) = 0.

BgLS can then be interpreted as the component of X that is explained by S, and

U as the component of X that cannot be explained by S (the de-correlated pre-
dictors).

Math Directed Reading Program

We may now define our model as follows:
y=al'S+ 870 +¢

We aim to predict Y while minimizing the predictive power of o coefficients.

We can formulate this problem as:

miﬁnE ((y—w)?) st Jals <tr) where &(r)>0

or equivalently,
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To solve this problem:
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The Brrry Ccan be estimated in closed form, only depending on U , and do not
change as r varies. The arggry depend on S and also on r through A(r), and they
must be estimated numerically.

Introducing TowerDebias

My current research with Dr. Norm Matloff in the Department of Computer
Science.

EY|X)=FEE(Y|X,S5)X]

towerDebias estimates E(Y |X) by modifying the predictions of an algorithm de-
signed to predict E(Y|X,S). The Tower Property in probability theory is key

here: averaging E(Y|X,S) over S while fixing X gives us E(Y|X). Since the
latter does not depend on S, we have effectively removed the influence of S.
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