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Introduction

Machine learning andAI systems are increasingly embedded in real-world decision-

making processes that impact consumers. This brings forth a critical concern: algo-

rithmic fairness. The challenge here is ensuring that predictions are not dispropor-

tionately influenced by sensitive attributes such as race, gender, or age with the

goal of promoting equitable outcomes.

Examples of Fairness: Hiring decision, Healthcare, Credit Lending, Risk Assess-

ments.

It is necessary to develop mathematical approaches to quantify biases and imple-

menting strategies to mitigate potential unfairness.

Motivating Example: COMPAS

The COMPAS (Correctional Offender Management Profiling for Alternative

Sanctions) algorithm was a commercial machine learning system designed to

assess a criminal’s risk of recidivism and assist judges in sentencing decisions

within the U.S. legal system.

An independent analysis by ProPublica alleged significant disparities: Black de-

fendants were disproportionately misclassified as high-risk, while white defen-

dants were more frequently misidentified as low-risk.

A Look into Algorithmic Fairness: Metrics and
Implementation

The scope of Algorithmic Fairness includes establishing benchmarks to measure

fairness and developing methods in compliance with these metrics.

Fairness Metrics: Fairness criteria can be categorized into two measures:

individual fairness and group fairness.

Individual fairness is that similar individuals should be treated similarly.

Group fairness requires that predictions remain consistent across different groups as defined

by some sensitive attribute(s).

Implementing Fairness: Fairness constraints can be integrated across various

stages of the machine learning pipeline.

Pre-processing involves removing bias from the original dataset before training the model

In-processing refers to incorporating fairness constraints during model training to reduce the

predictive power of sensitive variables. A considerable amount of research in this area

involves achieving fairness through ridge penalties in linear models

Post-processing involves modifying model predictions after training.

Fairness Metrics

Individual Fairness ensures similar individuals should receive similar predictions. If

two individuals are close in terms of relevant features, their outcomes should also

be close:

d(f (xi), f (xj)) ≤ d(xi, xj)

Group fairness ensures that predictive decisions do not disproportionately favor

or disadvantage certain demographic groups. Several group fairness metrics have

been proposed:

1. Demographic Parity requires the decision outcome to be independent of the

protected attribute (e.g., race, gender):

P (Ŷ = 1 | S = a) = P (Ŷ = 1 | S = b), ∀a, b ∈ S

2. Equal Opportunity ensures that the True Positive Rate (TPR) is equal across

different demographic groups for individuals who should receive a positive

outcome.

P (Ŷ = 1 | Y = 1, S = a) = P (Ŷ = 1 | Y = 1, S = b), ∀a, b ∈ S

3. Equalized Odds requires that both the True Positive Rate (TPR) and the False

Positive Rate (FPR) are the same across demographic groups.

P (Ŷ = 1 | Y = y, S = a) = P (Ŷ = 1 | Y = y, S = b), ∀y ∈ {0, 1}, ∀a, b ∈ S
4. Correlation Based Metrics: requires that correlation between Ŷ and S is

minimized across all demographic groups.

min
Ŷ

|cor(Ŷ , S)|

Implementing Fairness via Ridge Penalty on S

The setting: Let X and S denote matrices of predictors and sensitive features. Our

goal is to predicting Ŷ while minimize the predictive power of S in our regression

model.

First, we can write:

X = BTS + U

where B is the solution to the least squares problem: BOLS = (STS)−1STX . We

can define the residuals:

Û = X − BT
OLSS

By properties of OLS, residuals and regressors are uncorrelated. Thus, S and Û are

orthogonal; i.e. COV(S, Û ) = 0.

BT
OLS can then be interpreted as the component of X that is explained by S, and

Û as the component of X that cannot be explained by S (the de-correlated pre-

dictors).

Formulating the Mathematical Problem

We may now define our model as follows:

y = αTS + βT Û + ε

We aim to predict Ŷ while minimizing the predictive power of α coefficients.

We can formulate this problem as:

min
α,β

E
(
(y − yb)2) s.t. ‖α‖2

2 ≤ t(r) where t(r) > 0

or equivalently,

(αFRRM
b , βFRRM

b ) = arg min
α,β

‖y − Sα − Ubβ‖2
2 + λ(r)‖α‖2

2

To solve this problem:

[
α̂FRRM

β̂FRRM

]
=
([

S>

Û>

] [
S Û

]
+
[
λ(r)I 0

0 0

])−1 [S>

Û>

]
y

=
[
S>S + λ(r)I 0

0 Û>Û

]−1 [S>

Û>

]
y

=
[
(S>S + λ(r)I)−1S>y

(Û>Û)−1Û>y

]
.

The βFRRM can be estimated in closed form, only depending on Û , and do not

change as r varies. The αFRRM depend on S and also on r through λ(r), and they

must be estimated numerically.

Introducing TowerDebias

My current research with Dr. Norm Matloff in the Department of Computer

Science.

E(Y |X) = E[E(Y |X, S)|X ]

towerDebias estimates E(Y |X) by modifying the predictions of an algorithm de-

signed to predict E(Y |X, S). The Tower Property in probability theory is key

here: averaging E(Y |X, S) over S while fixing X gives us E(Y |X). Since the

latter does not depend on S, we have effectively removed the influence of S.
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